Properties of machine learning and FDRs for discovery in large scale data

Megan Hollister Murray

Department of Biostatistics Vanderbilt University

October 22nd, 2020

October 22nd, 2020

1 / 52

Megan Hollister Murray

Introduction

- 2 Machine Learning and Multiple Testing
- 3 False Discovery Rates
- A R Package FDRestimation

5 Final Thoughts

Two projects are included in this presentation:

- Machine Learning and Multiple Testing
 - Presented at ENAR 2019
 - Machine Learning
 - Traditional p-value methods
 - Second-generation p-values
 - Discovery in large-scale data
- False discovery rates
 - Estimation vs. control
 - Limitations with stats::p.adjust
 - R package FDRestimation

Table of Contents

Introduction

2 Machine Learning and Multiple Testing

- Background
- Methods
- Results
- Conclusions

3 False Discovery Rates

- p-value Based Methods
- Z-value Based Methods
- Null Proportion (π_0) Estimation
- 4 R Package FDRestimation
 - p.fdr
 - plot.p.fdr
 - get.pi0

Final Thoughts

Machine Learning and Multiple Testing Background

Statistics versus machine learning

Statistics draws population inferences from a sample, and machine learning finds generalizable predictive patterns.

Two marging pails in the study of histograd systems are inferred in production, below comes in andrematic and do the domdensity of the system of the system of the system of the domain of the system of the system of the system of the system approximation of the system balance. A broken study as a system of the system balance, a broken balance is the system approximation of the system balance and the system of the system balance and the system balance and a system of the system balance and the system balance and a system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system of the system balance and the system balance and the system balance are used to system balance and the domes and the system balance and the sy

Many methods from statistics and machine learning (ML) may

a on a constraint of the second secon

Figure 31, Hodgish of pero strelling by classical inference and HL. (0) Hodgisted is quelt of the Planck from the Institution (Effective transmission analysis as a function of effect view, measured by full charge in expression (0) Log-solide? Planck from is an inference of open imperators from soliden fromet. Classification, it is and it, and crisis inference by the teninitiation of your crisis. (0) Difference and the number of hyperplanel genes concety identified in 10.20 initiations by inference (gray FRI) and soliden fromet. (Oscil. Hus).

number of subjects is contrast to 'tong data', where the number of subjects is greater than that of eligony variables. Met naive minimal summergeneration about the data generating systems; they can be effect experimental design and in the presence of complicated numbers interactions. However, despite contrasting prediction results, the lack of an englisht model can make ML solutions of thinks to descept naives to existing buoksgata basedees.

- A paper in April 2018 *Nature Methods* on statistical discovery in large-scale data
- Concluded random forests outperformed Benjamini-Hochberg *p*-value based approaches
- Based on simulations of dysregulated genes in expression data
- Not all approaches were given the same a priori information

Image: A matrix

5 - A C

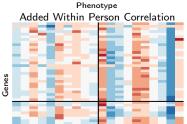
Machine Learning and Multiple Testing Goals

 $\rightarrow\,$ Paper received much press and substantial twitter discussion

Objectives:

- Examine claims using unbiased and fair comparisons
- Stimate accuracy of machine learning and "traditional" methods
- Identify methods with the best performance characteristics

Machine Learning and Multiple Testing Simulated Gene Expression Data



• 40 genes ; 20 people

- 10 phenotype positive ; 10 negative
- 25% (10) of genes are "dysregulated" across phenotype
- Computed pseudo-counts
- Allowed within person correlation across genes (new)

Machine Learning and Multiple Testing

Methods

Algorithm 1:

Result: Simulated RNA-seq counts

- Generate the observed counts for each gene by sampling from a Poisson distribution. Counts $\sim Pois(\lambda)$
- 2 Compute the mean gene expression $\lambda = \exp(\alpha_i + I_{\text{positive}}\beta_i + \epsilon_{ij} + \gamma_j)$
 - For all 40 genes simulate log mean expression levels from $\alpha_i \sim N(4,2)$
 - For the positive(+) phenotype include the addition of a standard normal to each mean expression β_i ~ N(0, 1)
 - For each gene and person simulate the genetic variation $\epsilon_{ij} \sim N(0, 0.15)$
 - OPTIONAL: For each person simulate the within-person correlation $\gamma_j \sim N(0, 1)$

EL NOR

Machine Learning and Multiple Testing Methods



Phenotype

Pseudo-counts: "normalized counts"

- From edgeR package
 - Method of Robinson and Smyth (2008)
 - Poisson distribution is used to model RNA-seq counts
 - Accounts for overdispersion
 - Preserves differences between genes and variability within each gene

Machine Learning and Multiple Testing Discovery Methods

Traditional	Machine Learning
Nominal <i>p</i> -values	Random Forest importance levels
Bonferroni adjusted <i>p</i> -values	Neural Net prediction weights
Benjamini-Hochberg Emp FDRs	
Second-generation <i>p</i> -values	

- 5% significance level / FWER / FDR
- 2 Top 10 ranked genes by ML criteria
- Top 10 ranked genes by Traditional criteria (new)

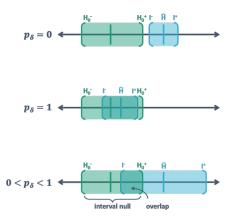
Machine Learning and Multiple Testing

Second Generation *p*-values

- SGPV is denoted by p_{δ}
- δ : interval null hypothesis
- The fraction of data-supported effect sizes that are null

Cases:

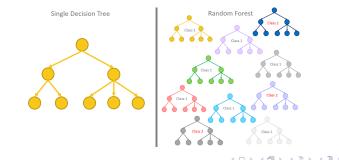
- $p_{\delta} = 0$ when data incompatible with null region
- $p_{\delta} = 1$ when data compatible with null region
- $\begin{tabular}{ll} \hline {\bf 0} < p_{\delta} < 1 \end{tabular} \$



Machine Learning and Multiple Testing Random Forest

Random Forest importance levels

- Classification for phenotype with 100 trees
- Mean decrease in Gini index
- Quantifies a gene's contribution to the average classification when the tree is split



Machine Learning and Multiple Testing

Neural Net

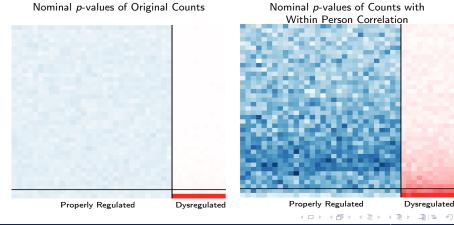
Neural Net prediction weights

- Predict phenotype for each person using the 40 genes as predictors
- Method proposed by Garson 1991 identifies the relative importance of explanatory variables for response in a supervised neural network by deconstructing the model weights
- Used gar.fun function created by Marcus Beck



Machine Learning and Multiple Testing Results

- Heatmap of discovery for nominal *p*-values
- Values below horizontal line less than 0.05

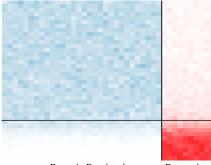


Megan Hollister Murray

Machine Learning and Multiple Testing Heatmaps of Rankings

- Heatmap of gene rankings by FDR (Benjamini-Hochberg)
- Top 10 rankings below horizontal line

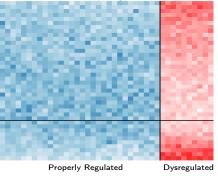
Rankings of Original Counts



Properly Regulated

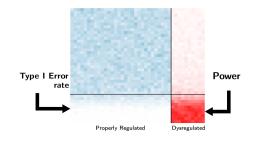
Dysregulated

Rankings of Counts with Within Person Correlation



Megan Hollister Murray

Machine Learning and Multiple Testing Results



Accuracy statistics:

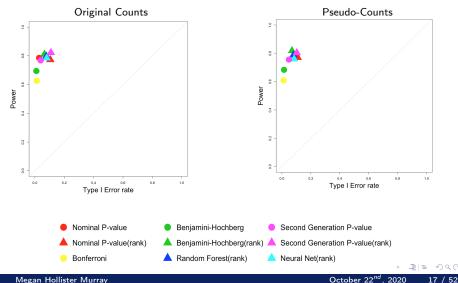
Power

 $\rightarrow\,$ Proportion of "dysregulated" genes identified as "dysregulated"

• Type I Error rate

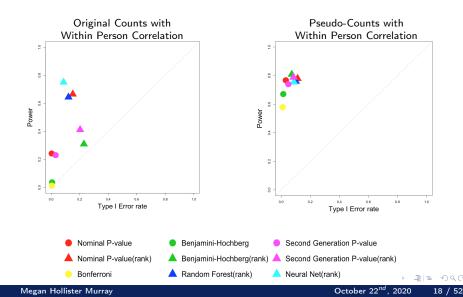
 \rightarrow Proportion of "properly regulated" genes identified as "dysregulated"

Machine Learning and Multiple Testing Results



Megan Hollister Murray

Machine Learning and Multiple Testing Results



Machine Learning and Multiple Testing Conclusions

- Normalizing step is critical for some methods
- Methods perform identically when properly compared (by rankings)
- Comparing ranking vs threshold discovery gives *false* impression of differential statistical accuracy (ie. *Nature Methods*)

	Traditional Methods	Machine Learning
Pros	 Significance level criterion 	 Handles complexity with ease
	 Can be ranked 	 Variety of flexible algorithms
	 Interpretable coefficients 	
Cons	Complexity poses challenges	• Must pre-specify number of findings
	• Significance criterion not universal	 No threshold criterion
	 Models can be simplistic 	 Coefficients hard to interpret

Table of Contents

Introduction

2 Machine Learning and Multiple Testing

- Background
- Methods
- Results
- Conclusions

3 False Discovery Rates

- p-value Based Methods
- Z-value Based Methods
- Null Proportion (π_0) Estimation

R Package FDRestimation

- p.fdr
- plot.p.fdr
- get.pi0
- 5 Final Thoughts

3 5

The performance of the ranked BH empirical FDRs and the use of stats::p.adjust motivated us to create our own package.

False discovery rates (FDRs)

- The propensity for an observed result to be mistaken
- Should accompany observed results
- Not always monotonic in p-value space
- Can control error rate (BH adjusted p-values)

False Discovery Rates

Benjamini-Hochberg (BH) procedure:

Find the largest index, k, such that Equation (1) holds. Then all features with $p_{(1)}, ..., p_{(k)}$ are deemed interesting at the FDR γ threshold and considered "findings".

$$p_{(i)} \le \gamma \frac{i}{m} \text{ for } i \in \{1, 2, ..., m\}$$

$$\tag{1}$$

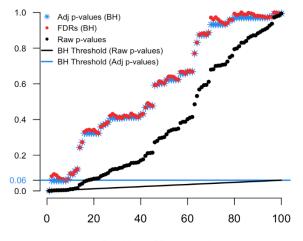
BH adjusted p-value:

$$\tilde{p}_{(i)} := \min_{j \ge i} \left(\frac{p_{(j)} m}{j} \right) \le \gamma \tag{2}$$

BH FDR:

$$FDR_i := \frac{p_i m}{\operatorname{rank}(p_i)} \cdot \hat{\pi}_0$$
 (3)

Simulated example

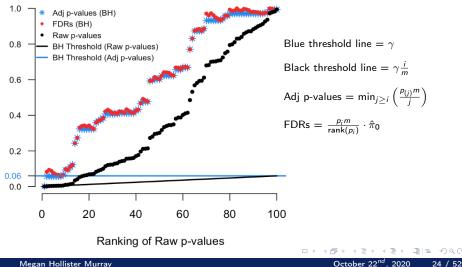


Ranking of Raw p-values

Megan Hollister Murray

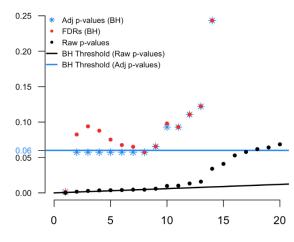
ъ

Simulated example



Megan Hollister Murray

Zoomed in simulated example

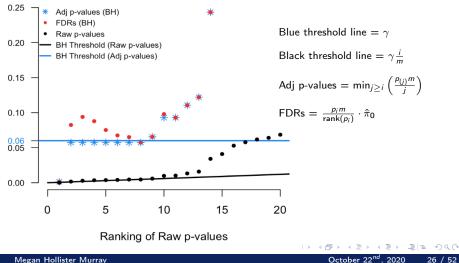


Ranking of Raw p-values

Megan Hollister Murray

315

Zoomed in simulated example



Megan Hollister Murray

Derivation from p-value space to \mathcal{Z} -value space:

$$p_{(i)} \leq \frac{i}{m}\gamma$$

$$p_{(i)}\frac{m}{i} \leq \gamma$$

$$F_0(\mathcal{Z}_{(i)})\frac{m}{i} \leq \gamma$$

$$\frac{\pi_0 F_0(\mathcal{Z}_{(i)})}{F(\mathcal{Z}_{(i)})} \leq \pi_0\gamma$$

3 5

27 / 52

October 22nd, 2020

Derivation from p-value space to \mathcal{Z} -value space:

$$P_{(i)} \leq \frac{i}{m}\gamma$$

$$P_{(i)}\frac{m}{i} \leq \gamma$$

$$F_{0}(\mathcal{Z}_{(i)})\frac{m}{i} \leq \gamma$$

$$FDR_{i} = \frac{\pi_{0}F_{0}(\mathcal{Z}_{(i)})}{F(\mathcal{Z}_{(i)})} \leq \pi_{0}\gamma$$

3 5

28 / 52

October 22nd, 2020

Null and alternative distributions: $F_0(Z) = \int_Z f_0(z) dz$ and $F_1(Z) = \int_Z f_1(z) dz$ Mixing distribution function:

$$F(\mathcal{Z}) = \pi_0 F_0(\mathcal{Z}) + \pi_1 F_1(\mathcal{Z})$$
(4)

The global FDR:

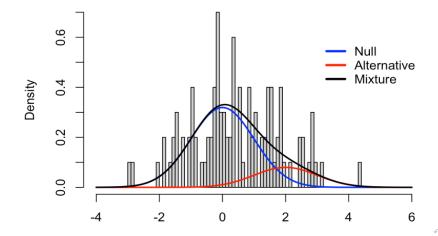
$$FDR(\mathcal{Z}) \coloneqq Pr\{null | z \in \mathcal{Z}\} = \frac{\pi_0 F_0(\mathcal{Z})}{F(\mathcal{Z})}$$
 (5)

Empirical Bayes estimate of the global FDR:

$$\frac{\hat{\pi}_0 \hat{F}_0(\mathcal{Z})}{\hat{F}(\mathcal{Z})} \tag{6}$$

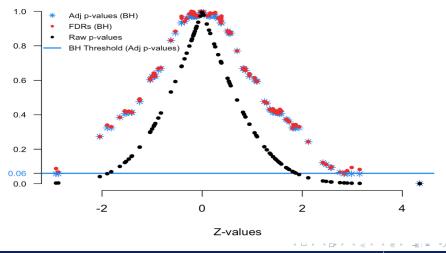
ELE NOR

Simulated Example Density Histogram



30 / 52

FDR Z-values plot



- The proportion of truly null features (π_0) in a mixture distribution
- Important component of the FDR estimates
- Conservative approach is to set $\pi_0 = 1$
- In our package users are able to specify an estimation routine
 - Storey
 - Meinshausen
 - Jiang
 - Nettleton
 - Pounds
 - New method "Last Histogram Height"

5 1 SQC

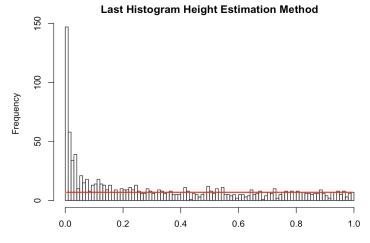
Algorithm 2: Last Histogram Height Method

Result: Null proportion estimate

- Plot a histogram of the raw p-values, $p_1, p_2, ..., p_m$, with B number of bins, where B < m
 - The most stable bin method is scott, according to our simulations
- 2 Store the histogram bin heights H_b for each bin b = 1, 2, ..., B
- Solution Call the height of last bin H_B the "null height"
- **④** Set the estimate of π_0 to be

$$\hat{\pi}_0 = \frac{H_B B}{m}$$

ELE NOR



р

Algorithm 3: Storey's Method

Result: Null proportion estimate

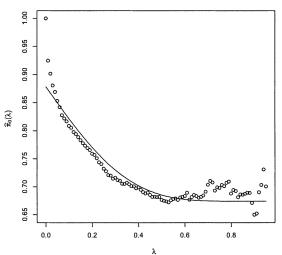
- Let $p_{(1)}, p_{(2)}, \dots p_{(m)}$ be the ordered p-values.
- 2 For a range of λ , say $\lambda = 0, 0.05, 0.10, ..., 0.95$, and i = 1, ..., m, calculate

$$\hat{\pi}_0(\lambda) = rac{\#\{p_i > \lambda\}}{m(1-\lambda)}$$

- Solution Let $\hat{h}(\cdot)$ be the natural cubic spline with 3 df of $\hat{\pi}_0(\lambda)$ on λ
- Set the estimate of π_0 to be when $\lambda = 1$:

$$\hat{\pi}_0 = \hat{h}(1)$$

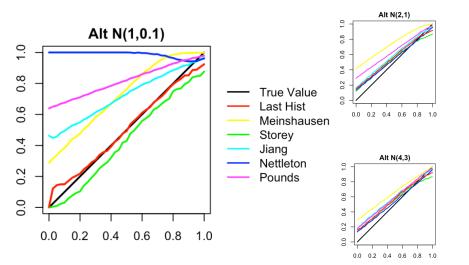
Natural cubic spline fit to the $\hat{\pi}_0(\lambda)$ outputs



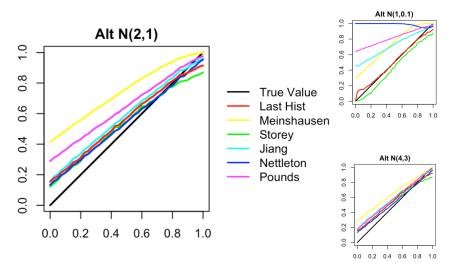
Megan Hollister Murray

October 22nd, 2020 36 / 52

False Discovery Rates Null Proportion (π_0) Estimation



False Discovery Rates Null Proportion (π_0) Estimation



1

False Discovery Rates Null Proportion (π_0) Estimation

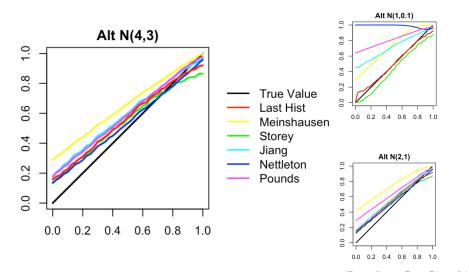


Table of Contents

Introduction

2 Machine Learning and Multiple Testing

- Background
- Methods
- Results
- Conclusions

3 False Discovery Rates

- p-value Based Methods
- Z-value Based Methods
- Null Proportion (π_0) Estimation

R Package FDRestimation

- p.fdr
- plot.p.fdr
- get.pi0

Final Thoughts

3 5

FDRestimation

- A user-friendly R package
- Outputs false discovery rates
- Inputs are p-values or \mathcal{Z} -values and a variety of assumptions

stats::p.adjust is a popular multiple comparisons R function

The problems:

- Returns the BH adjusted p-value labeled as the FDR estimate
- Removing NAs
- Certain key assumptions are not adjustable

Adjustment Methods:

- Benjamini-Hochberg
- Benjamini-Yeukateili (with both positive and negative correlation)
- Bonferroni
- Holm
- Hochberg
- Sidak

All FDR estimates can be adjusted for pi0.

5 - A C

Other inputs:

- Threshold for important findings
- The assumed *pi*₀ value
- The desired *pi*₀ estimation method
- Whether to sort the results
- Whether to remove NAs in the imputed raw p-value vector count

The function will return a list object of Summethe p.fdr class.

- fdrs
- Results Matrix
- Reject Vector
- pi0
- threshold
- Adjustment Method

Summary:

Call: p.fdr(pvalues = sim.data.p)

Number of tests: 100 Raw p-value Range: [8e-04, 0.9941]

Image: Image:

Adjustment Method: BH False Discovery Rate Range: [0.04094, 1] Findings at 0.05 level: Significant (Reject): 20 Inconclusive (Fail to Reject): 80

Estimated/Assumed Null Proportion (pi0): 1

∃ ► ∃ = \000

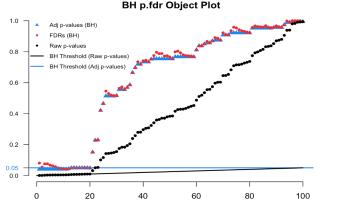
FDRestimation :: plot.p.fdr

- Plots the results from p.fdr
- By default:
 - the adjusted FDRs
 - adjusted p-values
 - raw p-values are plotted
 - threshold line for raw p-values
 - threshold line for adjusted p-values
- Other inputs:
 - axis limits
 - location of the legend
 - title of the plot
 - plotting symbols
 - colors of points and lines

FDRestimation :: plot.p.fdr

set.seed(88888)
sim.data.p=c(runif(80), runif(20, min=0, max=0.01))

plot(p.fdr(p=sim.data.p))

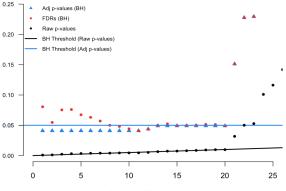


Ranking of Raw p-values

Megan Hollister Murray

```
October 22<sup>nd</sup>, 2020 47 / 52
```

plot(p.fdr(p=sim.data.p), xlim=c(0,25), ylim=c(0,0.25))



BH p.fdr Object Plot

Ranking of Raw p-values

글 님

- Estimates the null proportion from the raw p-values
- 6 different methods:
 - Last Histogram Height
 - Storey
 - Meinshausen
 - Jiang
 - Nettleton
 - Pounds
- Other inputs:
 - Histogram breaks method
 - Threshold of importance
 - Z-values

ELE NOR

set.seed(88888)

get.pi0(sim.data.p, estim.method="set.pi0", set.pi0=0.8)

[1] 0.8

get.pi0(sim.data.p, estim.method="last.hist")

[1] 0.85

get.pi0(sim.data.p, estim.method="storey")

[1] 0.8867

∃ ► ∃ = \000

Introduction

- 2 Machine Learning and Multiple Testing
- 3 False Discovery Rates
- 4 R Package FDRestimation

5 Final Thoughts

- Encourage the use of FDR methods
- Make clear that p-value adjustments are not interchangeable with estimated FDRs
- Provide a useful and easy tool for computing false discovery rates
- Flexible function that allows the user to specify all assumptions

Questions?

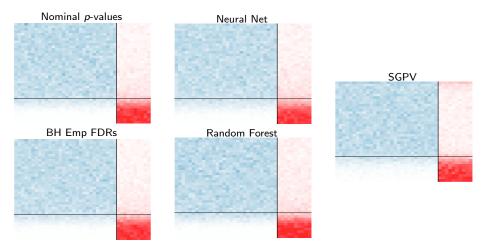
Megan Hollister Murray

October 22nd, 2020 1 / 9

< □ > < A >

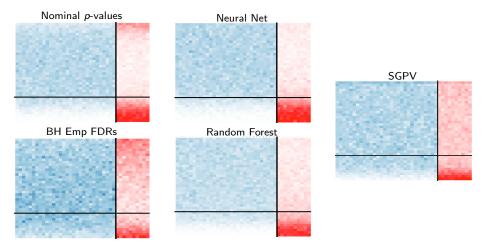
三日 のへの

• Heatmaps of rankings of the original gene expression counts



Heatmaps

• Heatmaps of rankings of the counts with added within person correlation



Final Thoughts Simple Motivating Example

Feature	Raw p-value	Z-value	Adjusted p-value	FDR	Lower Bound FDR
Feature 1	0.005	2.807	0.025	0.025	0.019
Feature 2	0.049	1.969	0.064	0.122	0.126
Feature 3	0.050	1.960	0.064	0.083	0.128
Feature 4	0.051	1.951	0.064	0.064	0.130
Feature 5	0.700	0.385	0.700	0.700	0.481

Table 1: Example with 5 features using the Benjamini-Hochberg adjustment and assuming a two-sided normal distribution.

FDRestimation :: p.fdr

Simulate 100 features with a true null proportion of 80%.

Input:	Output:				
set.seed(88888)	\$fdrs				
	[1] 1.000 0.957 0.968 0.834 0.698				
<pre>sim.data.p= c(runif(80),</pre>					
runif(20,	\$'Results Matrix'				
min=0,	BH FDRs Adjusted p-values Raw p-values				
max=0.01))	1 1.000 0.698 0.239				
	2 0.957 0.834 0.574				
p.fdr(p=sim.data.p[1:5],	3 0.968 0.834 0.774				
threshold=0.05,	4 0.834 0.834 0.834				
adjust.method="BH")	5 0.698 0.698 0.279				
	\$'Reject Vector' [1] "FTR.HO" "FTR.HO" "FTR.HO" "FTR.HO" "FTR.HO"				
	\$pi0 [1] 1				
	\$threshold				
	[1] 0.05				
	[1] 0.00				
	\$'Adjustment Method'				
	[1] "BH"				
	\$Call				
	p.fdr(p=sim.data.p[1:5], threshold=0.05, adjust.method="BH")				

```
Summary of p.fdr
Call:
p.fdr(pvalues = sim.data.p)
```

Number of tests: 100 Raw p-value Range: [8e-04, 0.9941]

```
Adjustment Method: BH
False Discovery Rate Range: [0.04094, 1]
Findings at 0.05 level:
Significant (Reject): 20
Inconclusive (Fail to Reject): 80
```

Estimated/Assumed Null Proportion (pi0): 1

ELE SQC

References I

Y. Benjamini and Y. Hochberg.

Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society*, 57(1):289–300, 1995.

Y. Benjamini and D. Yekutieli.

The control of the false discovery rate in multiple testing under dependency. *Annals of statistics*, pages 1165–1188, 2001.

C. Bonferroni.

Teoria statistica delle classi e calcolo delle probabilita.

Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8: 3–62, 1936.

Y. Hochberg.

A sharper bonferroni procedure for multiple tests of significance.

Biometrika, 75(4):800-802, 1988.

References II

$\mathsf{S.} \; \mathsf{Holm.}$

A simple sequentially rejective multiple test procedure.

Scandinavian journal of statistics, pages 65–70, 1979.

H. Jiang and R. Doerge.

Estimating the proportion of true null hypotheses for multiple comparisons.

Cancer informatics, 6:117693510800600001, 2008.

N. Meinshausen, J. Rice, et al.

Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses.

The Annals of Statistics, 34(1):373–393, 2006.

D. Nettleton, J. G. Hwang, R. A. Caldo, and R. P. Wise.

Estimating the number of true null hypotheses from a histogram of p values.

Journal of agricultural, biological, and environmental statistics, 11(3):337, 2006.

S. Pounds and S. W. Morris.

Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values.

Bioinformatics, 19(10):1236-1242, 2003.

Z. Šidák.

Rectangular confidence regions for the means of multivariate normal distributions.

Journal of the American Statistical Association, 62(318):626–633, 1967.

J. D. Storey and R. Tibshirani.

Statistical significance for genomewide studies.

Proceedings of the National Academy of Sciences, 100(16):9440-9445, 2003.