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Introduction

Two projects are included in this presentation:

Machine Learning and Multiple Testing
Presented at ENAR 2019
Machine Learning
Traditional p-value methods
Second-generation p-values
Discovery in large-scale data

False discovery rates
Estimation vs. control
Limitations with stats::p.adjust
R package FDRestimation
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Machine Learning and Multiple Testing
Background

A paper in April 2018 Nature Methods
on statistical discovery in large-scale
data
Concluded random forests outperformed
Benjamini-Hochberg p-value based
approaches
Based on simulations of dysregulated
genes in expression data
Not all approaches were given the same
a priori information
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Machine Learning and Multiple Testing
Goals

→ Paper received much press and substantial twitter discussion

Objectives:
1 Examine claims using unbiased and fair comparisons
2 Estimate accuracy of machine learning and “traditional” methods
3 Identify methods with the best performance characteristics
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Machine Learning and Multiple Testing
Simulated Gene Expression Data

Original Counts

G
en

es

Phenotype
Added Within Person Correlation

G
en

es

Phenotype

40 genes ; 20 people
10 phenotype positive ; 10 negative
25% (10) of genes are “dysregulated”
across phenotype
Computed pseudo-counts

Allowed within person correlation
across genes (new)
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Machine Learning and Multiple Testing
Methods

Algorithm 1:
Result: Simulated RNA-seq counts

1 Generate the observed counts for each gene by sampling from a Poisson
distribution. Counts ∼ Pois(λ)

2 Compute the mean gene expression λ = exp(αi + Ipositiveβi + εij + γj)

1 For all 40 genes simulate log mean expression levels from αi ∼ N(4, 2)
For the positive(+) phenotype include the addition of a standard
normal to each mean expression βi ∼ N(0, 1)

2 For each gene and person simulate the genetic variation
εij ∼ N(0, 0.15)

3 OPTIONAL: For each person simulate the within-person correlation
γj ∼ N(0, 1)
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Machine Learning and Multiple Testing
Methods

Original counts:
within person correlation

G
en

es

Phenotype
Psuedo-counts

G
en

es

Phenotype

Pseudo-counts: "normalized counts"

From edgeR package

Method of Robinson and Smyth
(2008)
Poisson distribution is used to
model RNA-seq counts
Accounts for overdispersion
Preserves differences between genes
and variability within each gene
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Machine Learning and Multiple Testing
Discovery Methods

Traditional Machine Learning
Nominal p-values Random Forest importance levels
Bonferroni adjusted p-values Neural Net prediction weights
Benjamini-Hochberg Emp FDRs
Second-generation p-values

1 5% significance level / FWER / FDR

2 Top 10 ranked genes by ML criteria

3 Top 10 ranked genes by Traditional criteria (new)
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Machine Learning and Multiple Testing
Second Generation p-values

SGPV is denoted by pδ

δ: interval null hypothesis

The fraction of data-supported effect
sizes that are null

Cases:

1 pδ = 0 when data
incompatible with null region

2 pδ = 1 when data compatible
with null region

3 0 < pδ < 1 when data are
inconclusive
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Machine Learning and Multiple Testing
Random Forest

Random Forest importance levels

Classification for phenotype with 100 trees
Mean decrease in Gini index
Quantifies a gene’s contribution to the average classification when the
tree is split
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Machine Learning and Multiple Testing
Neural Net

Neural Net prediction weights

Predict phenotype for each person using the 40 genes as predictors

Method proposed by Garson 1991 identifies the relative importance of
explanatory variables for response in a supervised neural network by
deconstructing the model weights

Used gar.fun function created by Marcus Beck
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Machine Learning and Multiple Testing
Results

Heatmap of discovery for nominal p-values

Values below horizontal line less than 0.05

Nominal p-values of Original Counts

Properly Regulated Dysregulated

Nominal p-values of Counts with
Within Person Correlation

Properly Regulated Dysregulated
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Machine Learning and Multiple Testing
Heatmaps of Rankings

Heatmap of gene rankings by FDR (Benjamini-Hochberg)

Top 10 rankings below horizontal line

Rankings of Original Counts

Properly Regulated Dysregulated

Rankings of Counts with
Within Person Correlation

Properly Regulated Dysregulated
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Machine Learning and Multiple Testing
Results

Accuracy statistics:

Power
→ Proportion of “dysregulated” genes identified as “dysregulated”

Type I Error rate

→ Proportion of “properly regulated” genes identified as “dysregulated”
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Machine Learning and Multiple Testing
Results

Original Counts Pseudo-Counts
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Machine Learning and Multiple Testing
Results

Original Counts with
Within Person Correlation

Pseudo-Counts with
Within Person Correlation
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Machine Learning and Multiple Testing
Conclusions

Normalizing step is critical for some methods

Methods perform identically when properly compared (by rankings)

Comparing ranking vs threshold discovery gives false impression of
differential statistical accuracy (ie. Nature Methods)

Traditional Methods Machine Learning
Pros • Significance level criterion • Handles complexity with ease

• Can be ranked • Variety of flexible algorithms
• Interpretable coefficients

Cons • Complexity poses challenges • Must pre-specify number of findings
• Significance criterion not universal • No threshold criterion
• Models can be simplistic • Coefficients hard to interpret
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False Discovery Rates

The performance of the ranked BH empirical FDRs and the use of
stats::p.adjust motivated us to create our own package.

False discovery rates (FDRs)

The propensity for an observed result to be mistaken

Should accompany observed results

Not always monotonic in p-value space

Can control error rate (BH adjusted p-values)
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False Discovery Rates
p-value Based Methods

Benjamini-Hochberg (BH) procedure:
Find the largest index, k, such that Equation (1) holds. Then all features with
p(1), ..., p(k) are deemed interesting at the FDR γ threshold and considered “findings".

p(i) ≤ γ
i

m
for i ∈ {1, 2, ...,m} (1)

BH adjusted p-value:

p̃(i) := min
j≥i

(
p(j)m

j

)
≤ γ (2)

BH FDR:

FDRi :=
pim

rank(pi )
· π̂0 (3)
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False Discovery Rates
p-value Based Methods

Simulated example
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False Discovery Rates
p-value Based Methods

Simulated example

Blue threshold line = γ

Black threshold line = γ i
m

Adj p-values = minj≥i

(
p(j)m

j

)
FDRs = pim

rank(pi )
· π̂0
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False Discovery Rates
p-value Based Methods

Zoomed in simulated example
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False Discovery Rates
p-value Based Methods

Zoomed in simulated example

Blue threshold line = γ

Black threshold line = γ i
m

Adj p-values = minj≥i

(
p(j)m

j

)
FDRs = pim

rank(pi )
· π̂0
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False Discovery Rates

Derivation from p-value space to Z-value space:

p(i) ≤
i

m
γ

p(i)
m

i
≤ γ

F0(Z(i))
m

i
≤ γ

π0F0(Z(i))

F (Z(i))
≤ π0γ
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False Discovery Rates

Derivation from p-value space to Z-value space:

p(i) ≤
i

m
γ

p(i)
m

i
≤ γ

F0(Z(i))
m

i
≤ γ

FDRi =
π0F0(Z(i))

F (Z(i))
≤ π0γ
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False Discovery Rates
Z-value Based Methods

Null and alternative distributions: F0(Z) =
∫
Z f0(z)dz and F1(Z) =

∫
Z f1(z)dz

Mixing distribution function:

F (Z) = π0F0(Z) + π1F1(Z) (4)

The global FDR:

FDR(Z) := Pr{null |z ∈ Z} = π0F0(Z)
F (Z) (5)

Empirical Bayes estimate of the global FDR:

π̂0F̂0(Z)
F̂ (Z)

(6)
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False Discovery Rates
Z-value Based Methods

Simulated Example Density Histogram
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False Discovery Rates
Z-value Based Methods

FDR Z-values plot
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False Discovery Rates
Null Proportion (π0) Estimation

The proportion of truly null features (π0) in a mixture distribution

Important component of the FDR estimates

Conservative approach is to set π0 = 1

In our package users are able to specify an estimation routine

Storey
Meinshausen
Jiang
Nettleton
Pounds
New method “Last Histogram Height"
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False Discovery Rates
Null Proportion (π0) Estimation

Algorithm 2: Last Histogram Height Method
Result: Null proportion estimate

1 Plot a histogram of the raw p-values, p1, p2, ...pm, with B number of bins,
where B < m

The most stable bin method is scott, according to our simulations

2 Store the histogram bin heights Hb for each bin b = 1, 2, ...,B

3 Call the height of last bin HB the “null height”

4 Set the estimate of π0 to be

π̂0 =
HBB

m
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False Discovery Rates
Null Proportion (π0) Estimation
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False Discovery Rates
Null Proportion (π0) Estimation

Algorithm 3: Storey’s Method
Result: Null proportion estimate

1 Let p(1), p(2), ...p(m) be the ordered p-values.

2 For a range of λ, say λ = 0, 0.05, 0.10, ..., 0.95, and i = 1, ...,m, calculate

π̂0(λ) =
#{pi > λ}
m(1− λ)

3 Let ĥ(·) be the natural cubic spline with 3 df of π̂0(λ) on λ

4 Set the estimate of π0 to be when λ = 1:

π̂0 = ĥ(1)
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False Discovery Rates
Null Proportion (π0) Estimation

Natural cubic spline fit to the π̂0(λ) outputs
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False Discovery Rates
Null Proportion (π0) Estimation
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False Discovery Rates
Null Proportion (π0) Estimation
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False Discovery Rates
Null Proportion (π0) Estimation
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R Package FDRestimation

FDRestimation

A user-friendly R package

Outputs false discovery rates

Inputs are p-values or Z-values and a variety of assumptions
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FDRestimation :: p.fdr

stats::p.adjust is a popular multiple comparisons R function

The problems:

Returns the BH adjusted p-value labeled as the FDR estimate

Removing NAs

Certain key assumptions are not adjustable
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FDRestimation :: p.fdr

Adjustment Methods:

Benjamini-Hochberg

Benjamini-Yeukateili (with both positive and negative correlation)

Bonferroni

Holm

Hochberg

Sidak

All FDR estimates can be adjusted for pi0.
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FDRestimation :: p.fdr

Other inputs:

Threshold for important findings

The assumed pi0 value

The desired pi0 estimation method

Whether to sort the results

Whether to remove NAs in the imputed raw p-value vector count
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FDRestimation :: p.fdr

The function will return a list object of
the p.fdr class.

fdrs

Results Matrix

Reject Vector

pi0

threshold

Adjustment Method

Summary:
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FDRestimation :: plot.p.fdr

Plots the results from p.fdr

By default:

the adjusted FDRs
adjusted p-values
raw p-values are plotted
threshold line for raw p-values
threshold line for adjusted p-values

Other inputs:

axis limits
location of the legend
title of the plot
plotting symbols
colors of points and lines
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FDRestimation :: plot.p.fdr

set.seed(88888)
sim.data.p=c(runif(80), runif(20, min=0, max=0.01))

plot(p.fdr(p=sim.data.p))

Megan Hollister Murray October 22nd , 2020 47 / 52



FDRestimation :: plot.p.fdr

plot(p.fdr(p=sim.data.p), xlim=c(0,25), ylim=c(0,0.25))
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FDRestimation :: get.pi0

Estimates the null proportion from the raw p-values

6 different methods:

Last Histogram Height
Storey
Meinshausen
Jiang
Nettleton
Pounds

Other inputs:

Histogram breaks method
Threshold of importance
Z-values
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FDRestimation :: get.pi0

set.seed(88888)

get.pi0(sim.data.p, estim.method="set.pi0", set.pi0=0.8)

[1] 0.8

get.pi0(sim.data.p, estim.method="last.hist")

[1] 0.85

get.pi0(sim.data.p, estim.method="storey")

[1] 0.8867
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Final Thoughts

Encourage the use of FDR methods

Make clear that p-value adjustments are not interchangeable with estimated
FDRs

Provide a useful and easy tool for computing false discovery rates

Flexible function that allows the user to specify all assumptions
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Final Thoughts

Questions?
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Heatmaps of Rankings

Heatmaps of rankings of the original gene expression counts

Nominal p-values

BH Emp FDRs

Neural Net

Random Forest

SGPV
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Heatmaps

Heatmaps of rankings of the counts with added within person correlation

Nominal p-values

BH Emp FDRs

Neural Net

Random Forest

SGPV
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Final Thoughts
Simple Motivating Example

Feature Raw p-value Z-value Adjusted p-value FDR Lower Bound FDR
Feature 1 0.005 2.807 0.025 0.025 0.019
Feature 2 0.049 1.969 0.064 0.122 0.126
Feature 3 0.050 1.960 0.064 0.083 0.128
Feature 4 0.051 1.951 0.064 0.064 0.130
Feature 5 0.700 0.385 0.700 0.700 0.481

Table 1: Example with 5 features using the Benjamini-Hochberg adjustment and
assuming a two-sided normal distribution.
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FDRestimation :: p.fdr

Simulate 100 features with a true null proportion of 80%.

Input:

set.seed(88888)

sim.data.p= c(runif(80),
runif(20,

min=0,
max=0.01))

p.fdr(p=sim.data.p[1:5],
threshold=0.05,
adjust.method="BH")

Output:

$fdrs
[1] 1.000 0.957 0.968 0.834 0.698

$’Results Matrix’
BH FDRs Adjusted p-values Raw p-values

1 1.000 0.698 0.239
2 0.957 0.834 0.574
3 0.968 0.834 0.774
4 0.834 0.834 0.834
5 0.698 0.698 0.279

$’Reject Vector’
[1] "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0" "FTR.H0"

$pi0
[1] 1

$threshold
[1] 0.05

$’Adjustment Method’
[1] "BH"

$Call
p.fdr(p=sim.data.p[1:5], threshold=0.05, adjust.method="BH")
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FDRestimation::p.fdr

Summary of p.fdr
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