
ABSTRACT

Multi-Parameter Functions in Chaotic Dynamical Systems

Megan Hollister

Director: Brian Raines, D. Phil.

For two semesters, a fellow math major and I thoroughly proved results from Sections
1.1 – 1.8 of An Introduction to Chaotic Dynamical Systems by Robert Devaney. After
going through Devaney’s calculations and proofs, I created a multi-parameter family of
functions to consider and observe. This is a piecewise function of polynomials that always
intersects the x-axis at 0 and 1. It has two maxima and one minimum value. Depending
on the range of the parameters, the minimum value can be above or below the x-axis. I
have analyzed its behavior and determined the fixed and periodic points. I found that at
certain parameter values the family of function’s corresponding invariant set will be closed
and totally disconnected. I conjecture that the invariant set is a perfect subset of the unit
interval which would make it a Cantor set. Next, if the same parameter values could be used
to show the new equation maps are chaotic. Dr. Brian Raines will guide me through the
steps of this process.
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CHAPTER ONE

Background Material and Proofs

This chapter includes definitions of necessary terms and notations from calculus and

topology. This information will be used to prove the stated theorems. This is simply a

selection of the material covered in the first year of research which I thought was most

beneficial and applicable to my project.

1.1 Elementary Definitions

Functions come in all different shapes and sizes, but over the years, mathematicians

have defined characteristics which we can use to compare and contrast functions. These

definitions allow us to distinguish functions by more than their outputs. To consider the

family of all functions is very broad and will not lead to a significant conclusion. Some of

these characteristics are necessary assumptions in the following impactful theorems.

To begin we will denote the set of natural numbers with N = 1, 2, 3, 4... and the set

of real numbers with R. The reals include rational numbers, irrational numbers, the entire

set of the naturals and more. The reals do not include imaginary numbers or positive or

negative infinity. Finally let the set I := {x ∈ R|0 ≤ x ≤ 1}.

Definition 1.1. Let f be a function that maps I into J and consider x, y ∈ I. f(x) is

one-to-one if f(x) 6= f(y) whenever x 6= y.

Definition 1.2. Let I and J be intervals and f : I → J . The function f is onto if for any

y in J there is an x ∈ I such that f(x) = y.

Definition 1.3. Let f be a function that maps E into Y . Let p ∈ E. The function f is

continuous at p if for every ε > 0 there exists a δ > 0 such that dY (f(x), f(p)) < ε for all

points in E for which dX(x, p) < δ.

Definition 1.4. Let f : I → J . The function f(x) is a homeomorphism if f(x) is one-to-one,

onto, and continuous, and f−1(x) is also continuous.
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A one-to-one function is not always onto and an onto function is not always one-to-one.

However, a homeomorphism is both one-to-one and onto. In the next couple of definitions,

we will characterize a set of points. Sets can be empty, i.e. the empty set, or contain an

infinite number of points. Also note that the complement of a set A ⊂ X is the set of all

points in X but not in A or A′ = {x ∈ X|x /∈ A}.

Definition 1.5. Let S ⊂ R. S is an open set if, for any x ∈ S, there is an ε > 0 such that

all points t in the open interval x− ε < t < x+ ε are contained in S.

Definition 1.6. Let S ⊂ R. A point x ∈ R is a limit point of S if there is a sequence of

points xn ∈ S converging to x. S is a closed set if it contains all of its limit points.

Definition 1.7. Let S ⊂ R. A subset U of S is dense in S if U = S.

Next, points will be characterized by how they relate to certain functions and sets.

Definition 1.8. Let f : I → J and consider x ∈ I. The point x is a fixed point for f if

f(x) = x.

Definition 1.9. Let f : I → J and consider x ∈ I. The point x is a periodic point of period

n if fn(x) = x. We denote the set of periodic points of period n by Pern(f).

Definition 1.10. Let f : I → J and consider x ∈ I. A point x is eventually periodic of period n

if x is not periodic but there exists m > 0 such that fn+i(x) = f i(x) for all i ≥ m. That is,

f i(x) is periodic for i ≥ m.

Definition 1.11. Let f : I → J and consider x, p ∈ I. Let p be periodic of period n. A

point x is forward asymptotic to p if limi→∞ f
in(x) = p. The stable set of p, denoted by

W s(p), consists of all points foward asymptotic to p.

Definition 1.12. Let f : I → J and consider x ∈ I. A point x is a critical point of f if

f ′(x) = 0. The critical point is non-degenerate if f ′′(x) 6= 0. The critical point is degenerate

if f ′′(x) = 0.
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Definition 1.13. Let f : I → J and consider x ∈ I. The forward orbit of x is the set of

points x, f(x), f 2(x), ... and is denoted by O+(x). If f is a homeomorphism, we may define

the full orbit of x, O(x), as the set of points fn(x) for n ∈ Z, and the backward orbit of x,

O−(x), as the set of points x, f−1(x), f−2(x)....

In the next section, these definitions will be used to understand the path of hyperbolic

points under multiple iterations.

1.2 Hyperbolic Points

The path of points under multiple iterations corresponds to the behavior of the map.

In this section, we will specifically consider maps with hyperbolic periodic points because

these are very important in dynamical systems.

Definition 1.14. Let f : I → J . Let p be a periodic point of prime period n. The point

p is hyperbolic if |(fn)′(p)| 6= 1. The number (fn)′(p) is called the multiplier of the periodic

point.

Proposition 1.15. Let f : I → J . Let p be a hyperbolic fixed point with |f ′(p)| < 1. Then

there is an open interval U about p such that if x ∈ U , then

lim
n→∞

fn(x) = p.

Proof. Let p be a hyperbolic fixed point with |f ′(p)| < 1. Because f is continuous, there

exists an ε > 0 and an A ∈ R such that |f ′(x)| < A < 1 for x ∈ [p − ε, p + ε] or for x with

|x − p| < ε. p is a fixed point and therefore f(p) = p. Using the Mean Value Theorem we

get the following inequality:

|f(x)− p| = |f(x)− f(p)| ≤ A|x− p| < |x− p| < ε.

So p is an accumulation point of f(x).Therefore |f(x)−p| < ε or f(x) ∈ [p− ε, p+ ε]. Notice

that |fn(x)| < An < 1 for all n ∈ N and so |fn(x)−p| ≤ An|x−p|. It follows that fn(x)→ p

as n→∞. Therefore there is an open interval [p− ε, p+ ε] about p such that if x ∈ U , then

limn→∞ f
n(x) = p.
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Figure 1.1.

Iteration map of g(x) = x3.

In Figure 1.1, we can see the path of points under multiple iterations of this function.

Because the map reflects the iterations about the line y = x, it is important to notice where

the function intersects with this line. These intersections may be places where the behavior

of a set of points changes. Here, we will define the different behaviors of the hyperbolic and

fixed points.

Definition 1.16. Let f : I → J . A hyperbolic point p of period n with |(fn)′(p)| < 1 is

called an attracting fixed point(a attractor) or sink.

Definition 1.17. Let f : I → J . A fixed point p with |f ′(p)| > 1 is called a repelling fixed point(a repellor)

or source.

It is clear that in Figure 1.1 x = 0 is an attracting periodic point and x = −1 and

x = 1 are repelling points.

Proposition 1.18. Let f : I → J . Let p be a hyperbolic fixed point with |f ′(p)| > 1. Then

there is an open interval U of p such that, if x ∈ U, x 6= p, then there exists k > 0 such that

fk(x) /∈ U .
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Proof. Let p be a hyperbolic fixed point with |f ′(p)| > 1. Since f ∈ C1, there exists ε > 0

and an A ∈ R such that |f ′(p)| > A > 1 and |f ′(x)| > A > 1 for x ∈ [p−ε, p+ε]. Notice there

exists an x where x 6= p and f ′(x) > A so we can conclude that |f(x)−f(p)||x−p| ≥ A > 1. Because

we know f(p) = p , |f(x)−f(p)| = |f(x)−p|. We also know that |f(x)−p| ≥ A|x−p| > |x−p|.

Then |f(x)− f(p)| > |x− p| so |f(x)−f(p)||x−p| > 1. Therefore, f(x) does not approach p.

We then can use induction to prove |fn(x) − p| ≥ An|x − p| for n ≥ 0. Thus there

exists n ∈ N such that fn(x) /∈ U. Then there is an open interval U = [p− ε, p+ ε] of p such

that, if x ∈ U , x 6= p, then there exists k > 0 such that fk(x) /∈ U .

The local behavior of hyperbolic periodic points can be determined by taking the

derivative at that point. When the absolute value of the derivate changes from less than

one to greater than one, it will intersect with the line y = x and this is where we saw the

behavior changed in Figure 1.1. In the next section, we will focus our attention on a specific

quadratic function and how points behave in relation to it.

1.3 The Quadratic Family of Functions

In this section we will observe the behavior of Fµ(x) = µx(1 − x) as a dynamical

system. This function will be essential to our understanding of chaos and is where my later

studies branched from Devaney’s book.

Proposition 1.19. Let F : I → J and µ > 0,

(1) Fµ(0) = Fµ(1) = 0 and Fµ(pµ) = pµ, where pµ = µ−1
µ

.

(2) 0 < pµ < 1 if µ > 1.

Proposition 1.20. Let F : I → J . Suppose µ > 1. If x < 0, then F n
µ (x)→ −∞ as n→∞.

If x > 1, then F n
µ (x)→ −∞ as n→∞.
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Proof. Suppose µ > 1. Let x < 0, then µx(1 − x) < x and Fµ(x) < x. Because the first

iteration of Fµ(x) is less than x we know it is a decreasing sequence. This sequence does

not converge to p, a fixed point, because the magnitude of the derivative or slope of f(x)

increases as x decreases. Therefore, as x is reflected across the line y = x it will travel away

from x = 0. In conclusion, F n
µ (x) → −∞ as n → ∞. Similarly we can see if x > 1 then

Fµ(x) < 0 so also F n
µ (x)→ −∞.

Figure 1.2 illustrates Proposition 1.20. Notice that all of the necessary information

when analyzing the behavior of this function will occur on the unit interval.
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Figure 1.2.

Graph of Fµ(x) = µx(1− x) when µ = 1.5.
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Figure 1.3.

Graph of Fµ(x) = µx(1− x) when µ = 2.5.
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Proposition 1.21. Let F : I → J and let 1 < µ < 3.

(1) Fµ has an attracting fixed point at pµ = (µ− 1)/µ and a repelling fixed point at 0.

(2) If 0 < x < 1, then

lim
n→∞

F n
µ (x) = pµ

.

Proof. Part 1 follows from Section 1.4 of Devaney’s book. So Fµ has an attracting fixed

point at pµ = (µ− 1)/µ and a repelling fixed point at 0.

For part 2 we will consider three cases. First let 1 < µ < 2. Also, suppose 0 < x ≤ 1/2.

As you can see from Figure 1.2, above, |Fµ(x)−pµ| < |x−Pµ| when x 6= pµ. Therefore,

F n
µ (x)→ pµ as n→∞ because it is an attracting fixed point.

Now let us consider 1/2 < x < 1. From the graph we observe that Fµ(x) will be in

the range (0, 1/2) as well. Notice F n
µ (x) = F n−1

µ (Fµ(x)). From the previous case we know

Fµ(x)→ pµ and pµ is a fixed point so we can conclude that F n
µ (x)→ pµ as n→∞. Therefore

limn→∞ F
n
µ (x) = pµ.

For our second case let 2 < µ < 3. As we can see from Figure 1.3 above all fixed

points, pµ are in between 1/2 and 1. For clarity let p̂µ represent the value in the interval

(0, 1/2) that is mapped onto pµ by Fµ. We know F − µ2 maps the interval [p̂µ, pµ] into

[1/2, pµ]. Therefore as we increase n F n
µ (x) approaches pµ. However, if x < p̂µ then we

cannot simply apply the same argument. We must analyze the graph and pick a specific

k > 0 such that F k
µ (x) ∈ [p̂µ, pµ]. So, F k+n

µ (x) → pµ as n → ∞. As a third case we can

conclude Fµ maps the interval (pµ, 1) onto (0, pµ). We know (0, 1) = (0, p̂µ)∪ [p̂µ, pµ]∪(pµ, 1).

Therefore limn→∞ F
n
µ (x) = pµ. Thirdly we will consider µ = 2.

Because of these three cases we can conclude that limn→∞ F
n
µ (x) = pµ

for 1 < µ < 3.
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For Proposition 1.21, we see that Fµ has 2 fixed points in [0, 1] and all other points

map to pµ. Now we will define Λ. First let A1 = {x ∈ I|F (x) ∈ A0}. For each n ∈ N let

An = {x ∈ I|F n(x) ∈ A0} ={x ∈ I|F i(x) ∈ I for I ≤ n but F n+1(x) /∈ I}. Then we can

define Λ = I −
(
∞⋃
n=0

An

)
which consists of only the points which never escape from I. We

can construct this set of points by successively removing open intervals, An, from the middle

of closed sets, I −
(
n−1⋃
n=0

An

)
.

Theorem 1.22. If µ > 2 +
√

5, then Λ is a Cantor set.

Proof. Suppose Λ = I−
(
∞⋃
n=0

An

)
where An = {x ∈ I|F i(x) ∈ I for i ≤ n but F n+1(x) /∈ I}.

Let µ > 2 +
√

5. There exists λ > 1 such that |F ′(x)| > λ for all x ∈ Λ. Using the chain

rule we see that |(F n)′(x)| > λn. Suppose Λ is not totally disconnected, so there exists

[x, y] ⊂ Λ such that x ∈ Λ and y ∈ Λ with x 6= y. Then |(F n)′(α)| > λn for all α ∈ [x, y].

Pick n ∈ N such that λn|y − x| > 1. Applying the Mean Value Theorem we see that

|F n(y)− F n(x)| > λn|y − x| > 1. So either F n(y) or F n(x) exists outside of I. This is a

contradiction, so then Λ is totally disconnected, with no intervals. We can observe from

the nature of how Λ was constructed that it is a nested intersection of closed intervals and

therefore Λ is closed. Notice that every endpoint of Ak for some k ∈ N is in Λ. Therefore Λ

is a Cantor set.

Definition 1.23. Let f : I → J . A set Γ ⊂ R is a repelling hyperbolic set for f if Γ is

closed, bounded and invariant under f and there exists an N > 0 such that |(fn)′(x)| > 1

for all n ≥ N and all x ∈ Γ.

We can apply this definition to Λ when µ > 2 +
√

5, then with N = 1 Λ is a repelling

hyperbolic set. In the next section, we use this set to define dynamical structure of the

quadratic map.
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1.4 A Model for Dynamic Structure

First, a symbolic model mapping will be constructed in order to define the dynamics

as simply as possible.

Definition 1.24. Consider the space Σ2 made up of sequences of 0′s and 1′s. Σ2 = {s =

(s0s1s2...)|sj = 0 or 1}.

Definition 1.25. Let s, t be points in Σ2 such that s = (s0s1s2...) and t = (t0t1t2...). We

define d as the distance between two points or for any s, t ∈ Σ2

d[s, t] =
∑∞

i=0
|si−ti|

2i
.

Proposition 1.26. d is metric on Σ2.

Proof. It follows d[s, t] ≥ 0 for all s, t ∈ Σ2. Also d[s, t] = 0 iff si = ti for all i. We know

|si − ti| = |ti − si| and so d[s, t] = d[t, s]. Let r, s, t ∈ Σ2 then using the triangle inequality

we get |ri − si|+ |si − ti| ≥ |ri − ti|. Then d[r, s] + d[s, t] ≥ d[r, t]. In conclusion, d is metric

on Σ2.

In order to determine the distance between sets and which subsets of Σ2 are closed

and open, we need the metric, d.

Proposition 1.27. Let s, t ∈ Σ2 and suppose si = ti, for i = 0, 1, ..., n. Then d[s, t] ≤ 1/2n.

Conversely, if d[s, t] < 1/2n, then si = ti, for i ≤ n.

Proof. Let s, t ∈ Σ2 and suppose si = ti, for i = 0, 1, ..., n. If si = ti for i ≤ n, then

d[s, t] =
∑n

i=0
|si−si|

2i
+
∑∞

i=n+1
|si−ti|

2i
≤
∑∞

i=n+1
1
2i

= 1
2n
. Therefore d[s, t] ≤ 1/2n.

Conversely, let d[s, t] < 1/2n. If sj 6= tj for some j ≤ n then d[s, t] ≥ 1
2j
≥ 1

2n
. Therfore

d[s, t] < 1
2n
. So then si = ti, for i ≤ n.

Proposition 1.27 gives us a quick way to determine if two sets are close to one another.

Definition 1.28. The shift map σ : Σ2 → Σ2 is given by σ(s0s1s2...) = (s1s2s3...).

Before we mention the next proposition it is important to note that if a subset U of S

is dense in S then Ū = S.
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Proposition 1.29. Let Σ2 = {s = (s0s1s2...)|sj = 0 or 1} and the shift map σ : Σ2 → Σ2.

(1) The cardinality of Pern(σ) is 2n.

(2) Per(σ) is dense in Σ2.

(3) There exists a dense orbit for σ in Σ2.

Now that we have defined the shift map on Σ2 in the next section we will compare it

to the map on Λ.

1.5 How the Shift Map Relates to the Quadratic Map

In this section, we will show that the shift map on Σ2 is essentially the same as the

map Fµ on Λ. First denote the sets I0 ⊂ I such that I0 contains the points on the left of

A0 and I1 ⊂ I such that I1 contains the points on the right of A0. It is important to notice

whether the iterates of x fall in I0 or I1. This will give us a general idea of the behavior of

the orbit.

Definition 1.30. Let F : I → J . The itinerary of x is a sequence S(x) = s0s1s2... where

sj = 0 if F j
µ(x) ∈ I0, sj = 1 if F j

µ(x) ∈ I1.

Theorem 1.31. If µ > 2 +
√

5, then S : Λ→ Σ2 is a homeomorphism.

Here is a part of the proof for Theorem 1.31. First let us define for all n ∈ N,

Is0s1...sn = {x ∈ I|x ∈ Is0 , Fµ(x) ∈ Is1 , ..., F n
µ (x) ∈ Isn}. We consider the preimage of a closed

interval A ⊂ I. The preimage consists of 2 closed intervals, one being in I0 and the other

in I1. We then looked at Is0s1...sn for all n ∈ N and determined it was a nested sequence of

nonempty closed intervals. This helps show S is onto.

Theorem 1.32. S ◦ Fµ = σ ◦ S.

Proof. Let x ∈ Λ be defined by the nested sequence of intervals
⋂
n≥0 Is0s1... determined by

S(x). So Is0s1...sn = Is0 ∩ F−1µ (Is1) ∩ ... ∩ F−nµ (Isn). We also know Fµ(Is0) = I. Then

we can write Fµ(Is0s1...sn) as Is1 ∩ F−1µ (Is2) ∩ ...F−n+1
µ (Isn) = Is1...sn . Then SFµ(x) =

SFµ(∩∞n=0Is0s1...sn) = S(∩∞n=0Is1...sn) = s1s2... = σS(x). Therefore S ◦ Fµ = σ ◦ S.
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Definition 1.33. Let f : A → A and g : B → B be two maps. f and g are said to be

topologically conjugate if there exists a homeomorphism h : A→ B such that, h ◦ f = g ◦ h.

The homeomorphism h is called a topological conjugacy.

Since S is a homeomorphism and S ◦ Fµ = σ ◦ S we see σ and Fµ are topologically

conjugate. Topologically conjugacy provides a way to test if two mappings have exactly the

same dynamics. Because Fµ on Λ is topologically conjugate to the shift map we can say that

the quadratic map has the characteristics from Proposition 1.29. In the following theorem

we have written this proposition in terms of the quadratic map.

Theorem 1.34. Let Fµ(x) = µx(1− x) such that F : I → J with µ > 2 +
√

5. Then

(1) The cardinality of Pern(Fµ) is 2n.

(2) Per(Fµ) is dense in Λ.

(3) Fµ has a dense orbit in Λ.

Topological conjugacy verifies that the shift map accurately models the quadratic map

on its invariant set. In the next section we will consider if the quadratic map is chaotic or

not.

1.6 Chaos

Many people define chaos differently but here we will address chaos from a topological

approach.

Definition 1.35. Let f be the function such that f : J → J is said to be topologically

transitive if for any pair of open sets U, V ⊂ J there exists k > 0 such that fk(U) ∩ V 6= ∅.

Following this definition, we know a map on a compact metric space contains a dense

orbit if and only if it is topologically transitive.

Definition 1.36. Let f be the function such that f : J → J has sensitive dependence on

initial conditions if there exists δ > 0 such that , for any x ∈ J and any neighborhood N of

x, there exists y ∈ N and n ≥ 0 such that |fn(x)− fn(y)| > δ.
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The following definition was chosen because it has become standard in some settings,

i.e. topological dynamics, and it is very applicable to examples like the quadratic map.

Definition 1.37. Let V be a set. f : V → V is said to be chaotic on V if

(1) f has sensitive dependence on initial conditions.

(2) f is topologically transitive.

(3) periodic points are dense in V .

Another explanation of this definition is that a chaotic map cannot be broken down into

different subsystems, unpredictably dependent on initial conditions and thirdly the periodic

points are dense in V .

Definition 1.38. Let f be the function such that f : J → J is expansive if there exists

ν > 0 such that, for any x, y ∈ J , x 6= y, there exists n such that |fn(x)− fn(y)| > ν.

The following two examples are the most noteworthy results we have gotten thus far.

It uses all of the information obtained in the last 5 sections. Example 1.39 defines only a

small subset of the unit interval. But Example 1.40 considers a larger chaotic region.

Example 1.39. The quadratic maps Fµ(x) = µx(1− x) are chaotic on Λ when µ > 2 +
√

5.

Example 1.40. F4(x) = 4x(1− x) is chaotic on the interval I = [0, 1].

Now that we have identified the quadratic map as chaotic under certain conditions we

will change our function and determine if it too is chaotic.
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CHAPTER TWO

New Function

I constructed a new family of functions by first setting constraints. I wanted the

functions in this family to have two independent parameters and have three critical points,

at 1
4
, 1

2
, and 3

4
. I also wanted these functions to intersect with the x-axis at 0 and 1 always.

Below is a family of functions that conforms to these constraints and that we chose to analyze.

We also chose to focus on the parameters where and 0 ≤ a < 1 and −1 < b < 0.

fa,b(x) =



4ax 0 ≤ x < 0.25

4x(b− a) + 2a− b 0.25 ≤ x < 0.5

4x(a− b) + 3b− 2a 0.5 ≤ x < 0.75

−4ax+ 4a 0.75 ≤ x < 1

(2.1)

Now the behavior of the functions in this family will heavily depend on the choice of

the parameters a and b. While a and b are independent of one another, the combination of

their values will characterize our functions outputs and graph. The parameter values a and

b represent the f(1
4
) = f(3

4
) value and the f(1

2
) respectively. If b = −0.1 and a = 0.2 the

following figure is the corresponding graph.

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

0.15

0.20

Figure 2.1.

Graph of f0.2,−0.1(x).
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In order to find our critical points we took the derivative of our function, fa,b(x).

f ′a,b(x) =



4a 0 ≤ x < 0.25

4b− a 0.25 ≤ x < 0.5

4a− b 0.5 ≤ x < 0.75

−4a 0.75 ≤ x < 1

(2.2)

As we notice from the following graph the derivative does not equal zero anywhere

for this function f0.2,−0.1(x).But the derivative does not exist at our two maxima and one

minimum points. Therefore, our function has critical points at x = 0.25 and x = 0.5 and

x = 0.75 and one fixed point at x = 0.

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10

Figure 2.2.

Graph of f ′0.2,−0.1(x).

If we had an unlimited amount of time we could test all the possible combinations of

parameters values and ranges. Because our time was limited we confined a and b to the

following ranges, 0 < a ≤ 1 and −1 ≤ b < 0. More specifically, b = −0.1 for our initial

analysis. This gives us a graph with two maxima and one minima and keeps our function

outputs between -1 and 1. The following graphs show our function graphed alongside the

line y = x to easily show the intersections where fixed points are found.
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The following graph is for the parameters b = −0.1 and a = 0.15. Notice the graph

does not go above the line y = x. Therefore every point x ∈ [0, b0] ∪ [b1, 1] (where b0 and b1

are the x intercepts of our function excluding x = 0, 1) gets attracted to 0 as the function is

iterated. The points x ∈ (b0, b1) leave the unit interval after the first iteration.
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1.0

Figure 2.3.

Graph of f0.15,−0.1(x).

The following graph is for when b = −0.1 and a = 0.25. Notice the graph overlaps

with the line y = x from 0 ≤ x ≤ 0.25. Therefore every point x ∈ [0, 0.25] is a fixed point,

but these points are not attracting fixed points because for ε > 0 all points in Nε(x) stay

still instead of mapping closer to x. This is because these points all map directly to fixed

points and then get stuck after a low number of iterations. The points x ∈ (0.25, b0]∪ [b1, 1]

mapped to [0, 0.25]. And again the points x ∈ (b0, b1) leave the unit interval after the first

iteration.
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Figure 2.4.

Graph of f0.25,−0.1(x).

The following graph is for when b = −0.1 and a = 0.5. Notice the graph intersects

with the line y = x twice. Therefore we have two fixed points at x = 0 and x = p1. We

know the points x ∈ (b0, b1) leave the unit interval after the first iteration. But the behavior

of the rest of the points in the unit interval is for more complicated than our last 2 graphs.

We will come back to this example in the next section.
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Figure 2.5.

Graph of f0.5,−0.1(x).
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2.1 Bifurcation Diagrams and Iteration Maps

One method Devaney implemented to determine significant parameter values was us-

ing a bifurcation diagram. The following bifurcation diagrams have set b = −0.1 and are

running iterations over many thousands of evenly spaced a values from 0 to 1. In Wolfram

Mathematica I ran a program to calculate the bifurcation diagram of fa,−0.1. The program

calculated 500 iterations but only plotted the last 300 iterations. The horizontal axis is for

the a values and the vertical axis is for the x values. The points and lines on this graph

represent which x values move within the interval [0, 1] at each specific iteration.

As you can see below there is a “drip” formed at a = 0.25 this makes sense following

our interpretation of Figure 2.4 where we have fixed points that stay for x ∈ [0, 0.25]. Also

the bifurcation diagram almost stops after a ≈ 0.452, this means most x values leave [0, 1]

after 500 iterations when a > 0.452.

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.1

0.2

0.3

0.4

Figure 2.6.

Bifurcation diagram of fa,−0.1(x).

Here I have also included a zoomed in version of the bifurcation diagram to show there

is an “eye-hole” in the diagram between a = 0.25 and a = 0.3. This “eye-hole” corresponds

to x-values between 0.22 and 0.27. This means a relatively large interval of x values leaves

after 500 iterations. The points that are left behind in [0, 1] after many iterations will be

essential in evaluating if the function is chaotic or not.
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Figure 2.7.

Bifurcation zoomed in diagram of fa,−0.1(x).

In order to more specifically see what is going on after many iterations, I have included

a series of drawings. Hopefully this will help us characterize the set of points which stay in

[0, 1].

For this first drawing 0.25 < a < 0.75 because we have two fixed points, x = 0 and

x = p1 with 0.25 < p1 < b0. We see that x1 < 0.25 leaves I after two iterations and x2 > 0.75

gets gets stuck in a periodic loop and stays in [0, 1] under iteration.

Figure 2.8.

Iteration map of f0.5,−0.1(x).
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In Figure 2.9 we see than when a = 0.75 we have exactly three fixed points at x = 0,

x = p1 and x = 0.75 with 0.25 < p1 < b0. Here x1 gets stuck in a periodic loop and stays in

I under iteration and x2 leaves the unit interval after three iterations.

Figure 2.9.

Iteration map of f0.75,−0.1(x).

In the following drawing we see that when 0.75 < a < 1 then we have four fixed points

at x = 0, x = p1, x = p2 and x = p3 with 0.25 < p1 < b0, b1 < p2 < 0.75, 0.75 < p3 < 1.

Here we see x1 maps to a fixed point and stays in the unit interval permanently. However

x2 leaves I after six iterations.

Figure 2.10.

Iteration map of f0.9,−0.1(x).
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Now consider the properties of b0 and b1. If we fix b = −0.1 then as a→∞ b0 → 0.5+

and b1 → 0.5−, but b0, b1 6= 0.5. And we calculated that a = b0 when a = b0 ≈ 0.4549 and

that a = b1 when a = b1 ≈ 0.5391. Because of the bifurcation diagrams we know that when

a = 0.4549 most of the x-values leave I after iterations.

In this final drawing we can see that when 0.4549 ≈ b0 < a < b1 ≈ 0.5391 after the

first iteration three intervals leave, (b0, b1), (x1, x2) and (x3, x4). And on the second iteration

four more intervals will leave. If a > b1 then five intervals would leave after one iteration

and eight intervals would leave after the second iteration.

Figure 2.11.

Interval graph of fa,−0.1(x) with 0.4549 ≈ b0 < a < b1 ≈ 0.5391.

2.2 Results

First we will prove that for b = −0.1 and 0.4549 ≈ b0 < a < b1 ≈ 0.5391 the points

remaining form a Cantor set, this proof will be similar to the proof of Theorem 1.22. First

let us note B0 = (b0, b1) and B1 = (x1, x2) ∪ (x3, x4) or we can define Bn = {x ∈ I|fna,b(x) ∈

Bn−1}. So that
⋃∞
n=0Bn represents all of the points that eventually leave [0, 1].

Theorem 2.1. For b = −0.1 and 0.4549 ≈ b0 < a < b1 ≈ 0.5391 the invariant set of fa,b(x)

form a closed and totally disconnected set.
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Proof. We can prove that for Λ = I − (
⋃∞
n=0Bn):

(1) Λ is closed.

(2) Λ is totally disconnected.

Notice Λ is a nested intersection of closed intervals.

I − (
⋃∞
n=0Bn) = I ∩ (

⋃∞
n=0Bn)′ = I ∩

⋂∞
n=0(Bn)′

Bn are open sets but the complements, (Bn)′, are closed sets. Also we know I is closed.

So I ∩
⋂∞
n=0(Bn)′ is closed and therefore Λ is a closed set.

Suppose x, y ∈ Λ such that [x, y] ⊂ Λ. For b = −0.1 and b0 < a < b1 there exists a λ >

1.6 > 1 such that |f ′(x)| > λ for all x ∈ Λ. We also know by the chain rule |(fn)′(x)| > λn.

For all α ∈ [x, y] we know |(fn)′(α)| > λn. Pick k ∈ N such that λk|y − x| > 1. Applying

the Mean Value Theorem we see that |fk(y)− fk(x)| ≥ λk|y − x| > 1. So if this interval

is contained in Λ ⊂ [0, 1] then fk(y) or fk(x) is outside of Λ ⊂ [0, 1], but we assumed the

entire closed interval [x, y] stayed in Λ ⊂ [0, 1]. This is a contradiction, so then Λ is totally

disconnected and therefore has no intervals.

We conjecture that Λ is a perfect subset of I. If this is true Λ would be a Cantor set.

This is because in order to prove Λ = I − (
⋃∞
n=0Bn) is a Cantor set we need to show:

(1) Λ is closed.

(2) Λ is totally disconnected.

(3) Λ is a perfect subset of I.

Finally we conjecture that our function fa,b(x) maps are chaotic on Λ when b = −0.1

and 0.4549 ≈ b0 < a < b1 ≈ 0.5391. This is very similar to Example 1.39.
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CHAPTER THREE

Conclusion

We set out to use Devaney’s book on chaotic dynamical systems to help us analyze a

multi-parameter family of functions. In the end we set constraints on our parameters and

came to a conclusion about specific instances. Even though we were not able to address the

family of functions in their entirety, we still discovered a sliver of their behavior.

Our final concluding discoveries are about the characteristics and behavior of our family

of piecewise defined functions.

fa,b(x) =



4ax 0 ≤ x < 0.25

4x(b− a) + 2a− b 0.25 ≤ x < 0.5

4x(a− b) + 3b− 2a 0.5 ≤ x < 0.75

−4ax+ 4a 0.75 ≤ x < 1

(3.1)

We know if |a| > 1 and |b| > 1 then all points except x = 0 leave the unit interval

after multiple iterations. Let b0 and b1 be the points in [0, 1] with fa,b(b0) = 0 = fa,b(b1). We

know if a = 0.25 and −∞ < b ≤ 0.5 there are two cases. If b < 0 then x ∈ [0, b0] ∪ [b1, 1]

stay in the unit interval. An the second case is if b ≥ 0 then all x ∈ [0, 1] stay in [0, 1] under

iteration. Then if b0 < a < b1 and −1 ≤ b < 0 then the points remaining in I form a closed

and totally disconnected set. We conjecture that this invariant set is also a perfect subset

of I, making the set itself a Cantor set. Also we conjectured that under these constraints f

maps are chaotic on its invariant set.

3.1 Future Work

As I said in Results Section, I conjecture that the invariant set of fa,b(x) is a perfect

subset of I and I also conjecture that this set would be chaotic under the specified parameter

values. These conjectures have not been thoroughly proved. Future work would include

perfecting and solidifying these assumptions. Also, because we did not consider all cases and

22



combinations of parameter values, there is more work to do in order to completely analyze

this multi-parameter family of functions’ behavior. Cases such as a < 0 and 0 < b ≤ 1 were

not considered. Some of these cases were not considered because they seemed less interesting

after an initial judgment. Also some more future work is needed to determine the significance

of chaos in our family of functions. We identified an occurrence but not a meaning or an

application.

As I am headed to graduate school for biostatistics, I am very interested in ways that

pure math concepts can be applied to real world problems. Hopefully I can find a way to

apply the knowledge gained from this project to some future research. I am hoping to get

involved in a project with the JFK Medical Center in Nashville, TN, specifically with their

studies on mental disabilities.

Chaotic dynamical systems have been applied to many fields including electrical and

computer engineering when trying to program simulations, music theory when determining

the resonance and frequency of chords, and to the medical field specifically within the studies

of neuron stimulation. The more mathematicians understand and discover in chaotic dynam-

ical systems, the more possibilities for technological advancement and scientific discovery in

the future.

23



BIBLIOGRAPHY

[1] Devaney, Robert L. An Introduction to Chaotic Dynamical Systems, 1-52. Addison-
Wesley Publishing Company, 1989.

[2] Mak, Ronald. “Chapter 5: Finding Roots.” Java Number Cruncher the Java Program-
mer’s Guide to Numerical Computing. Upper Saddle River, NJ: Prentice Hall PTR,
2003. http://flylib.com/books/en/2.758.1.53/1/

[3] Rudin, Walter. Principles of Mathematical Analysis. Third ed. New York, NY: McGraw-
Hill, 1976.

[4] Sobotka, M.“Graphical Chaos.” Chaos Theory Pictures, 4 Apr. 2001. http://www-
m8.ma.tum.de/personen/hayes/chaos/Iteration.html

24


