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Background

@ Recent paper in Nature Methods on
statistical discovery in large-scale data

nature/methods

@ Concluded random forests outperformed
Benjamini-Hochberg p-value based
approaches

@ Based on simulations of dysregulated
genes in expression data

POINTS OF SIGNIFICANCE

Statistics versus machine |
learning .

@ Not all approaches were given the same
a priori information
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Goals

— Paper received much press and substantial twitter discussion

Objectives:
@ Examine claims using unbiased and fair comparisons
@ Estimate accuracy of machine learning and “traditional” methods

© Identify methods with the best performance characteristics
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Phenotype

40 genes ; 20 people

10 phenotype positive ; 10 negative

25% (10) of genes are "“dysregulated”
across phenotype

o Computed pseudo-counts = normalized
counts (Robinson and Smyth, 2008)

Allowed within person correlation
across genes (new)
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Methods

Discovery Methods

Traditional Machine Learning
Nominal p-values Random Forest importance levels
Bonferroni adjusted p-values Neural Net prediction weights

Benjamini-Hochberg Emp FDRs  Penalized Regression (forthcoming)
Second-generation p-values

@ 5% significance level / FWER / FDR
© Top 10 ranked genes by ML criteria
© Top 10 ranked genes by Traditional criteria (new)
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Second Generation p-values

Overview

e SGPV is in [0, 1] and denoted by ps

@ 0 indicates dependence on (pre-specified) interval null hypothesis

SGPV reports the fraction of data-supported effect sizes that are null
or trivial

Adjustment for multiple comparisons is automatic

o Cases:

© ps; = 0 when data incompatible with null region
@ ps = 1 when data compatible with null region
© 0 < ps < 1 when data are inconclusive
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@ Heatmap of discovery p-values by nominal p-values
@ Values below horizontal line less than 0.05

Nominal p-values of Original Counts Nominal p-values of Counts with
Within Person Correlation

o  Se—
Properly Regulated Dysregulated Properly Regulated Dysregulated

«O0>» 4F>» «=)r « =) = Q>



@ Heatmap of gene rankings by FDR (Benjamini-Hochberg)
@ Top 10 rankings below horizontal line

Rankings of Original Counts Rankings of Counts with

NERNENENLLLEEEEYEYE

Properly Regulated Dysregulated Properly Regulated Dysregulated

«O0>» 4F>» «=)r « =)

DA




@ Heatmaps of rankings of the original gene expression counts

Neural Net
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Accuracy statistics:

Type | Error:! a
e Power

I rate

Properly Regulated
— Proportion of “dysregulated” genes identified as “dysregulated”
o Type | Error rate

Dysregulated

— Proportion of “properly regulated” genes identified as “dysregulated”
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Power

Original Counts

o4 o8
Type | Error rate

@ Nominal P-value
A Nominal P-value(rank)

Bonferroni

@ Benjamini-Hochberg

A Random Forest(rank)

Power

Pseudo-Counts

04 06 08

Type | Error rate

@ Second Generation P-value
A Benjamini-Hochberg(rank) A second Generation P-value(rank)
A\ Neural Net(rank)
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Original Counts with

Pseudo-Counts with
Within Person Correlation Within Person Correlation
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Type | Error rate Type | Error rate
@ Nominal P-value

@ Benjamini-Hochberg
A Nominal P-value(rank)

@ Second Generation P-value
Bonferroni

A Benjamini-Hochberg(rank) A second Generation P-value(rank)
A Random Forest(rank) A\ Neural Net(rank) > Q>



Conclusions

@ Normalizing step is critical for some methods
@ Methods perform identically when properly compared (by rankings)

@ Comparing ranking vs threshold discovery gives false impression of
differential statistical accuracy (ie, Nature Methods)

Traditional Methods Machine Learning
Pros | « Significance level criterion e Handles complexity with ease
e Can be ranked e Variety of flexible algorithms

o Interpretable coefficients

Cons | » Complexity poses challenges e Must pre-specify number of findings
e Significance criterion not universal | e No threshold criterion

e Models can be simplistic o Coefficients hard to interpret
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