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Background

Recent paper in Nature Methods on
statistical discovery in large-scale data

Concluded random forests outperformed
Benjamini-Hochberg p-value based
approaches

Based on simulations of dysregulated
genes in expression data

Not all approaches were given the same
a priori information
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Goals

→ Paper received much press and substantial twitter discussion

Objectives:
1 Examine claims using unbiased and fair comparisons
2 Estimate accuracy of machine learning and “traditional” methods
3 Identify methods with the best performance characteristics
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Methods
Simulated Gene Expression Data

Original Counts

G
en

es

Phenotype
Added Within Person Correlation

G
en

es

Phenotype

40 genes ; 20 people
10 phenotype positive ; 10 negative
25% (10) of genes are “dysregulated”
across phenotype
Computed pseudo-counts = normalized
counts (Robinson and Smyth, 2008)

Allowed within person correlation
across genes (new)
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Methods
Discovery Methods

Traditional Machine Learning
Nominal p-values Random Forest importance levels
Bonferroni adjusted p-values Neural Net prediction weights
Benjamini-Hochberg Emp FDRs Penalized Regression (forthcoming)
Second-generation p-values

1 5% significance level / FWER / FDR
2 Top 10 ranked genes by ML criteria
3 Top 10 ranked genes by Traditional criteria (new)
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Second Generation p-values
Overview

SGPV is in [0, 1] and denoted by pδ

δ indicates dependence on (pre-specified) interval null hypothesis

SGPV reports the fraction of data-supported effect sizes that are null
or trivial
Adjustment for multiple comparisons is automatic

Cases:
1 pδ = 0 when data incompatible with null region
2 pδ = 1 when data compatible with null region
3 0 < pδ < 1 when data are inconclusive
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Second Generation p-values
Illustration 1
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Second Generation p-values
Illustration 2
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Results
Heatmaps of p-values

Heatmap of discovery p-values by nominal p-values
Values below horizontal line less than 0.05

Nominal p-values of Original Counts

Properly Regulated Dysregulated

Nominal p-values of Counts with
Within Person Correlation

Properly Regulated Dysregulated
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Results
Heatmaps of Rankings

Heatmap of gene rankings by FDR (Benjamini-Hochberg)
Top 10 rankings below horizontal line

Rankings of Original Counts

Properly Regulated Dysregulated

Rankings of Counts with
Within Person Correlation

Properly Regulated Dysregulated
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Results
Heatmaps of Rankings

Heatmaps of rankings of the original gene expression counts

Nominal p-values

BH Emp FDRs

Neural Net

Random Forest

SGPV
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Results
Comparisons

Accuracy statistics:
Power
→ Proportion of “dysregulated” genes identified as “dysregulated”

Type I Error rate
→ Proportion of “properly regulated” genes identified as “dysregulated”
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Results
Comparisons

Original Counts Pseudo-Counts
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Results
Comparisons

Original Counts with
Within Person Correlation

Pseudo-Counts with
Within Person Correlation
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Conclusions

Normalizing step is critical for some methods
Methods perform identically when properly compared (by rankings)
Comparing ranking vs threshold discovery gives false impression of
differential statistical accuracy (ie, Nature Methods)

Traditional Methods Machine Learning
Pros • Significance level criterion • Handles complexity with ease

• Can be ranked • Variety of flexible algorithms

• Interpretable coefficients

Cons • Complexity poses challenges • Must pre-specify number of findings

• Significance criterion not universal • No threshold criterion

• Models can be simplistic • Coefficients hard to interpret
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