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for discovery in large-scale translational data

‘ 1. Background |

e A recent paper in the journal Nature Methods examined multiple approaches for high-dimensional
discovery in large-scale translational data, such as identifying dysregulated genes in genomic
data

e They concluded that random forests (a machine learning approach) outperformed traditional
methods rooted in p-value adjustments

e However, the implementation of machine learning methods used prior knowledge that was not
available to the traditional methods

e We repeated this investigation using a modified approach that did not favor any particular method
and considered the addition of within person correlation

‘ 2. Methods |

e Objectives:

— To examine the Nature Methods claims under a broad set of conditions that is unbiased and
fair for all methods

— To estimate the accuracy of typical machine learning methods and traditional statistical
methods for high-dimensional discovery
— To identify the methods with the best performance characteristics

2.1 Simulated Study Population

e Gene expression data of 40 genes from 20 people

¢ 10 people are phenotype positive and 10 are phenotype negative (e.g., blue or brown eyes)

¢ 25% of the genes (10) were set to be "dysregulated” across phenotype

¢ Allowed for within person correlation across genes

e Used pseudo-counts to smooth data, which allowed us to easily distinguish gene differences
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2.2 Discovery Methods Examined

¢ A variety of methods were used to identify dysregulated genes
e For the traditional methods we used a pre-specified significance level of 0.05
e To appropriately compare all methods the top 10 ranked p-values/importance levels were taken

P-value adjustments
e Raw p-values
e Benjamini-Hochberg p-values
e Second-generation p-values
e Bonferroni p-values

Machine Learning
e Random Forest importance levels

e Neural Net prediction weights

Megan Hollister
Department of Biostatistics, Vanderbilt University

An evaluation of machine learning and traditional statistical methods

‘ 3. Results |

3.1 Comparisons

e Accuracy statistics were computed

Sensitivity or Power
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— Proportion of "dysregulated” genes identified as "dysregulated”

— Proportion of "properly regulated” genes identified as "dysregulated”
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3.2 Rankings
Heat Maps of Rankings by Genes
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3.3 Findings

e Performance characteristics depend on which method of comparison is used, either a
pre-specified significance level or the top 10 ranked values

e After smoothing, the within person correlation does not change the relative performance, but it
slightly changes the accuracy levels of all methods

e Almost uniformly, the machine learning methods did not yield improved accuracy and they depend
heavily on the a priori chosen number of "dysregulated” genes

‘ 4. Conclusion |

e Machine learning methods only outperform standard methods when they are given extra
iInformation

— Their additional complexity does not lead to improved accuracy in this situation

e The choice of an analysis method for large-scale translation data is critical to the success of any
statistical investigation
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